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ABSTRACT 

 

In passive microwave remote sensing of soil moisture, the 

tau-omega (τ-ω) model has often been used to provide soil 

moisture estimates at a spatial scale representative of the 

satellite footprint dimensions.  For modeling simplicity, 

model parameters such as the single scattering albedo (ω) and 

vegetation opacity (τ) that go into the geophysical inversion 

process are often assumed to be independent of polarizations.  

Although this absence of polarization dependence can often 

be justified in special cases as in low-frequency remote 

sensing or under dense vegetation conditions, it is not a robust 

assumption in general.  Additional model parameterization 

errors arising from this assumption are possible, leading to 

degradation in soil moisture estimation accuracy.  In this 

paper, we propose a time series approach to try to resolve the 

polarization dependence of several τ-ω model parameters as 

well as the temperature bias arising from the ancillary 

temperature data.  The Version 4 of the Soil Moisture Active 

Passive (SMAP) Level 1B brightness temperature time series 

observations were used to illustrate the mechanics of this 

approach, with an emphasis on a comparison between 

resulting satellite soil moisture retrievals and in situ data 

collected at several core validation sites.  It was found that 

this time series approach resulted in significant reduction of 

the dry bias exhibited in the current SMAP passive soil 

moisture data products, while retaining the same performance 

in other metrics of the current baseline passive soil moisture 

retrieval algorithm. 

 

Index Terms — SMAP, passive, soil moisture, time 

series, polarization. 

 

1. INTRODUCTION 

 

Since its launch in January 2015, the NASA Soil Moisture 

Active Passive (SMAP) mission has returned nearly three 

years of L-band (1.41 GHz) brightness temperature 

observations at both horizontal and vertical polarizations.  

The data have enabled routine operational and near real-time 

production of passive soil moisture estimates with an average 

global revisit period of 2-3 days [1]. 

The current baseline passive soil moisture retrieval 

algorithm is a single channel algorithm that utilizes the 

vertically polarized brightness temperatures (SCA-V), along 

with ancillary data and model parameters that were 

designated before launch [2].  Although the baseline retrieval 

algorithm was found to deliver soil moisture estimates with 

an unbiased RMSE that exceeded the SMAP target retrieval 

accuracy (≤ 0.040 m3/m3 over non-frozen land surfaces with 

vegetation water content ≤ 5 kg/m2), the corresponding 

estimates were shown to exhibit a moderate dry bias (> 0.030 

m3/m3) over a majority of core validation sites where in situ 

data were available for direct comparison [3][4][5].  Various 

causes have been proposed to explain the observed dry bias, 

including systematic uncertainties in the spatial aggregation 

of in situ data, inadequate modeling of soil moisture 

variability over soil depth, and uncertainties in ancillary data.  

In addition to these possible causes, non-optimal forward 

model parameters, especially those assumed to have no 

polarization dependence, as well as systematic bias in 

effective soil temperature [6] may also play a significant role 

in the overall level of soil moisture estimates, causing the 

resulting retrieval to bias in one way or the other. 

In this paper, we propose a time series dual channel 

algorithm (TS-DCA) that attempts to address parameter 

optimality and surface temperature bias.  A similar time series 

approach (MT-DCA) [7] had been proposed to solve for ω 

and τ, assuming their independence on polarization and a 

constant vegetation opacity for a short period of time. In TS-

DCA, the inversion model is subject to the time constraints 

of the SMAP brightness temperature observations at 

horizontal and vertical polarizations.  This formulation 

resolves not only the optimality and polarization dependence 

of model parameters but also the bias in surface temperature 

as expected by the forward model. 

 

2. METHODOLOGY 

 

In passive microwave remote sensing of soil moisture, the 

tau-omega (τ-ω) model has often been used for soil moisture 

retrieval.  A common formulation of the model for brightness 

temperatures observed at an angle of θ can be found in [2]: 
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𝑇𝐵𝑝 = 𝑇𝑠𝑒𝑝exp(−𝜏𝑝 sec 𝜃)

+ 𝑇𝑐(1 − 𝜔𝑝)[1

− exp(−𝜏𝑝 sec 𝜃)][1

+ 𝑟𝑝exp(−𝜏𝑝 sec 𝜃)] 

(1) 

 

where 

 

𝑟𝑝 = 𝑟𝑜𝑝 exp(−ℎ𝑝cos2𝜃) (2) 

 

In Eq. (1), the subscript p refers to either horizontal or vertical 

polarization, Ts is the soil effective temperature, Tc is the 

vegetation temperature (often assumed to be the same as Ts 

during the dawn hours for SMAP descending overpasses), p 

is the nadir vegetation opacity, p is the vegetation single 

scattering albedo, and rp is the rough-surface soil reflectivity, 

which is related to the smooth-surface soil reflectivity rop 

according to Eq. 2 through the roughness coefficient hp in an 

exponential term.  Eqs. 1 and 2 allow soil moisture estimates 

to be inverted from TBp (from observations), Ts and p (from 

ancillary data), as well as hp and p (from lookup table) 

through a soil dielectric model. 

The time series dual channel formulation presented in 

this paper accommodates polarization dependence in the 

roughness coefficient (hh and hv), single scattering albedo (h 

and v), and vegetation opacity (h and v), and attempts to 

resolve them individually.  In addition, an additive bias term 

(δ) in Ts is also included so as to account for potential 

discrepancy between the ancillary land surface model output 

temperature and the radiometric response as expected by the 

model.  With a brightness temperature record with N discrete 

time series samples at horizontal and vertical polarizations, 

the following inequality must be met: 

 

2𝑁 ≥  𝑁 +  7 (3) 

 

before the 2N brightness temperature time series observations 

can be used to solve for the N soil moisture time series 

estimates and other unknown polarization-dependent 

parameters that are assumed to have small or no variability 

over a duration represented by N.  In this presentation, a 2½-

year record (Apr 2015 through Nov 2017) of horizontally and 

vertically polarized SMAP Level 1B brightness temperature 

time series was formulated using the τ-ω model in a least-

square nonlinear minimization scheme to solve for the 

unknown quantities (mv, hh, hv, h, v, h, v and δ) described 

above, where the soil moisture time series mv is a vector of 

dimension N.  At each grid cell location, the roughness 

coefficient, single scattering albedo, and the temperature bias 

were assumed to be constant over time for simplicity, 

whereas the vegetation opacity was assumed to follow the 

general climatological temporal trend (thus slow temporal 

variability) of the normalized vegetation difference index 

(NDVI).  A prototype of this minimization scheme was 

implemented in MATLAB, resulting in the extraction of a 

global 2½-year record of soil moisture, vegetation opacity, 

and static maps of model parameters. 

 

3. RESULTS 

 

Tables 1 and 2 illustrate the resolved Ts bias (δ) and key 

performance metrics (bias, correlation, and unbiased root-

mean-square error [ubRMSE]) in comparisons between the 

TS-DCA retrieval and in situ data.  The same metrics were 

also computed for SCA-V for comparison.  Figures 1 and 2 

illustrate the estimates of soil moisture (mv) and vegetation 

opacity (v), whereas Figure 3 shows the resolved Ts bias. 

Unless stated otherwise, all analyses were conducted on a 36 

km EASE Grid 2.0 global projection. 

 
Table 1: 6:00 am TS-DCA retrieval vs. in situ data 

 
δ 

 
Table 2: 6:00 pm TS-DCA retrieval vs. in situ data 

 
δ

 

 
 
Figure 1: 6:00 am TS-DCA soil moisture estimates in m3/m3 between Jun 5-
7, 2015 using a 2½-year record of SMAP L-band brightness temperatures. 

 



 
 
Figure 2: 6:00 am TS-DCA vertically polarized vegetation opacity estimates 

between Jun 5-7, 2015 using a 2½-year record of SMAP L-band brightness 

temperatures. 
 

 
 
Figure 3: 6:00 am TS-DCA resolved Ts annual mean bias using a 2½-year 
record of SMAP L-band brightness temperatures. 
 

4. DISCUSSION 

 

As indicated in Tables 1 and 2, both TS-DCA and SCA-V 

delivered very similar performance against measured in situ 

data at core validation sites in terms of soil moisture retrieval 

accuracy.  For example, the average ubRMSEs are almost 

identical (~ 0.040 m3/m3) for both 6:00 am and 6:00 pm 

comparison; the average correlation coefficients are 0.808 vs. 

0.800 (6:00 am) and 0.799 vs. 0.759 (6:00 pm).  However, 

TS-DCA, by virtue of its more polarization-dependent model 

parameters and resolved bias in Ts, resulted in a far lower bias 

over a majority of core validation sites when compared with 

SCA-V: −0.009 m3/m3 vs. −0.033 m3/m3 (6:00 am) and 

−0.009 m3/m3 vs. −0.046 m3/m3 (6:00 pm).  The average 

resolved Ts biases according to TS-DCA are +3.067 K (6:00 

am) and +3.322 K (6:00 pm).  In addition, the global 

distribution of soil moisture and vegetation opacity in Figs. 1 

and 2 shows the expected geographical patterns, with higher 

soil moisture and vegetation opacity over dense forest areas 

and lower soil moisture and vegetation opacity over arid 

areas.  Figure 3 suggests that the land surface model output 

temperature currently used in SCA-V needs warm bias 

correction (red areas) in more parts of the world than cold 

bias correction (blue areas). Global Ts annual mean biases 

were found to be +1.852 K (6:00 am) and +1.942 K (6:00 pm) 

over land.  Further independent global temperature validation 

analyses are needed to confirm this global pattern of Ts bias 

as resolved by TS-DCA. 

It is important to note that the TS-DCA comparison 

results in Tables 1 and 2 rely on the assumptions that (1) the 

τ-ω forward model is sufficiently accurate in modeling what 

the SMAP radiometer actually ‘sees’ and (2) the upscaled in 

situ data over core validation sites provide an accurate spatial 

average of soil moisture at a microwave sensing depth 

determined, among other factors, by surface heterogeneity, 

surface wetness, soil texture, vegetation water content, and 

soil moisture variability over depth.  These assumptions are 

not necessarily valid over all the core validation sites 

considered in this work. 

 

 

5. CONCLUSION 

 

A time series dual channel algorithm was presented in this 

paper as a means to improve the dry bias exhibited in the 

current SMAP passive soil moisture products.  Comparison 

with in situ data showed that the new algorithm retained the 

same unbiased RMSE and correlation as the current baseline 

retrieval algorithm (SCA-V), while significantly reducing the 

dry bias associated with the latter.  Furthermore, the new 

algorithm resolves the polarization dependence of model 

parameters in the τ-ω model.  This decomposition of 

polarization is expected to shed further insight into passive 

soil moisture retrieval algorithm development. 
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